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The coherence of electron spin can be significantly enhanced by locking the Overhauser field from
nuclear spins using the nuclear spin preparation. We propose a theoretical model to calculate the
long time dynamics of the Overhauser field under intrinsic nuclear spin diffusion in a quantum dot.
We obtain a simplified diffusion equation that can be numerically solved and show quantitatively
how the Knight shift and the electron-mediated nuclear spin flip-flop affect the nuclear spin diffusion.
The results explain several recent experimental observations, where the decay time of Overhauser
field is measured under different configurations, including variation of the external magnetic field,
the electron spin configuration in a double dot, and the initial nuclear spin polarization rate.
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I. INTRODUCTION

Electron spins in single quantum dots consist of one of
the promising systems for realization of quantum com-
putation [1]. The spin state of a single electron in a
quantum dot can be coherently controlled either opti-
cally through fast laser pulses or electronically through
tuning of gate voltages [1, 2, 3, 4, 5]. In experiments,
the coherence time of the electron spin is limited by its
hyperfine coupling to the nuclear spin environment in
the host semiconductor material. The coupling causes
spectral diffusion and gives a typical spin decoherence
time T ∗2 ∼ 15ns for the electron spin qubit [6, 7]. This
coherence time could be significantly prolonged with ap-
plication of spin echo or other dynamic decoupling tech-
niques [8]. However, implementation of these techniques
requires repeated applications of many laser pulses. Each
pulse inevitably induces some noise by itself, which lim-
its the practical performance of the dynamic decoupling
techniques to suppress spin noise under real environ-
ments.

Another technique to increase the coherence time for
the electron spin is through the dynamic nuclear-spin
preparation (DNP) [9, 10, 11, 12, 13, 14, 15], which
prepares the nuclear spin environment into certain con-
figurations. The nuclear spins in this configuration col-
lectively generate an effective magnetic field (the Over-
hauser field) on the electron spin with small fluctuation,
significantly reducing the spectral diffusion of the elec-
tron spin qubit. Although nuclear spins can be polarized
through many methods such as optical pumping [9], sub-
stantial reduction in the fluctuation of the Overhauser
field requires almost complete polarization of the nuclear
spins [10], which is hard to achieve experimentally. The
recent experiments, however, demonstrate a surprising
feedback mechanism which can lock the Overhauser field
to certain values without significant polarization of the
nuclear spin environment [12, 13, 14, 15]. The Over-
hauser field generated from this locking mechanism has
small fluctuation, which effectively increase the coherence
time T ∗2 of the electron spin qubit by up to two orders of

magnitudes. The locking of the Overhauser field through
the DNP process has been seen in a number of experi-
mental systems, under both optical and electronic gate
control [12, 13, 14, 15].

To enjoy a longer spin coherence time, it is desir-
able to do gate experiments on the electron spins under
the nuclear spin environment prepared with the DNP,
which produces a fixed Overhauser field. An important
question is then how long this fixed Overhauser field
can survive after the DNP process and what facts de-
termine/influence the relaxation time of the Overhauser
field. Recent experiments have observed that the pro-
duced Overhauser field can endure from a few seconds to
a few minutes and the relaxation time of the Overhauser
field depends on a variety of experimental parameters,
such as the applied magnetic field [16, 17, 18], the elec-
tron spin configuration in double quantum dots [17], and
the DNP pump time [19].

In this paper, we develop a quantitative theory to cal-
culate the relaxation time of the Overhauser field un-
der the environment of quantum dots, and provide an
explanation to the experimental observations mentioned
above in different setups and with control of different
experimental parameters. The relaxation of the Over-
hauser field is caused by nuclear spin diffusion, which
has been well studied in bulk material [20, 21], where
diffusion is caused simply by the nuclear dipole-dipole
interaction. In a quantum dot, however, the presence
of the electron spin generates several new effects. First,
the electron spin can mediate the diffusion of the nuclear
spins through a virtual hyperfine process. Second, the ef-
fective magnetic field from the electron spin produces an
inhomogeneous Knight shift on the nuclear spins through
the hyperfine coupling which suppresses the nuclear spin
diffusion. The change of the nuclear spin diffusion coef-
ficient by the Knight shift has been taken into account
in Ref. [22], but without consideration of the electron
mediated nuclear spin diffusion. A recent work considers
relaxation of the Overhauser field due to the electron me-
diated nuclear spin diffusion, but without consideration
of the direct nuclear dipole-dipole interaction [23]. In this
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case, the Overhauser field can only decay by less than 1%,
which suggests that it is necessary to include the dipole
interaction in the long time dynamics. A quantitative
theory is still missing to our knowledge that includes a
complete description of all the competing effects men-
tioned above. In this work, we take into account all these
diffusion mechanisms, and the resulting theory provides
an explanation of the recent experimental observations
in Refs. [16, 17, 18, 19].

The paper is arranged as follows: in Sec. II we give
a formalism to describe relaxation of the Overhauser
field that includes contributions from the nuclear dipole-
dipole interaction, the electron mediated nuclear spin dif-
fusion, and the Knight shift. The effective nuclear spin
diffusion equation is solved numerically to determine the
relaxation time of the Overhauser field. In Sec. III, we
compare the theoretical calculations with the recent ex-
perimental observations under control of different experi-
mental parameters, and show that they are in qualitative
or semi-quantitative agreement. We summarize our re-
sults in Sec. IV with brief discussions.

II. DECAY OF THE OVERHAUSER FIELD
THROUGH NUCLEAR SPIN DIFFUSION

We assume that an external magnetic field B0 much
larger than the mean value and variance of the local
Overhauser field generated by nuclei is applied along the
z-direction (perpendicular to the quantum dot layer). In
this case, we can drop the nonsecular terms in the inter-
action Hamiltonian [24]. For simplification, we consider
only one species of nuclei around the quantum dot elec-
tron. The total Hamiltonian for the electron and nuclear
spin system, including both the Fermi contact hyperfine
interaction and nuclear dipole-dipole interaction, can be
written as:

H = He +Hn +Hen +Hnn, (1)
He = −geµBB0S

z, (2)

Hn = −gnµNB0

∑
i

Izi , (3)

Hen =
∑
i

AiS
zIzi +

∑
i

Ai
2

(S+I−i + S−I+
i ), (4)

Hnn =
∑
i 6=j

2BijIzi I
z
j −

∑
i6=j

BijI
+
i I
−
j , (5)

Bij =
µ0

4π
(gnµN )2R−3

ij (1− 3 cos2 θij), (6)

where Ai denotes the hyperfine coupling between the
electron and nuclear spin at site i with spatial coordi-
nates (xi, yi, zi). Rij is the distance between two nuclei
at site i, j. θij is the angle between the line connecting
sites i, j and the z direction.

We note that for B0 ranging from a few mT to a
few T, the electron Zeeman splitting is on the order of

10−1 − 102GHz, while the average hyperfine coupling in
most quantum dot systems is on the order of MHz. Thus
we can adiabatically eliminate the spin-flip terms in the
hyperfine interaction Hamiltonian and correspondingly
modify the other terms in the Hamiltonian as [23]:

He = −(geµBB0 +
∑
iA

2
i

4geµBB0
)Sz, (7)

Hn =
∑
i

[−gnµNB0 +Ai(1−
Ai

4geµBB0
)Sz]Izi , (8)

Hnn =
∑
i 6=j

2BijIzi I
z
j −

∑
i 6=j

(Bij +
AiAjS

z

2geµBB0
)I+
i I
−
j ,(9)

where we have introduced an electron-mediated nuclear
flip-flop term in Hnn. Since we are interested in the long
time dynamics of nuclear spins, we can completely elimi-
nate the electron from the Hamiltonian by replacing the
constant operator Sz with its expectation value. We find
that using Sz = 1/2 or Sz = −1/2 will yield almost the
same result in the following calculations. Therefore we
can set Sz = 1/2 for simplicity and arrive at the following
effective Hamiltonian (neglecting constant terms):

H = H0 +H1, (10)

H0 ≈
∑
i

(−gnµNB0 +Ai/2)Izi +
∑
i 6=j

2BijIzi I
z
j ,(11)

H1 = −
∑
i6=j

(Bij +
AiAj

4geµBB0
)I+
i I
−
j . (12)

Here, the term proportional to Ai in H0 is the Knight
shift term. For this Knight shift, we have neglected the
small term proportional to A2

i in Eq. (8) as it is domi-
nated by the Ai term.

The expectation value for z component of the nuclear
spin at site k will evolve according to the Schrodinger
equation:

∂〈Izk〉
∂t

=
i

~
Tr{ρ(t)[H1, I

z
k ]}, (13)

where ρ(t) is the nuclear spin density matrix at time t,
which can be calculated by switching to the interaction
picture:

ρ̃(t) = ρ(0) +
i

~

∫ t

0

[ρ̃(t′), H̃1(t′)]dt′, (14)

with H̃1(t) = exp(iH0t/~)H1exp(−iH0t/~). Further cal-
culation yields [20]:

∂〈Izk〉
∂t

=
i

~
Tr{ρ(0)[H̃1(t), Izk ]}

+
(
i

~

)2 ∫ t

0

Tr{ρ(t− t′)[H1, [H̃1(t′), Izk ]]}dt′ (15)

We assume the nuclear spin (with spin-I) density ma-
trix in a product state of the following form:

ρ(t) =
⊗
k

ρk(t) ρk(t) =
1

2I + 1
+
〈Izk(t)〉

Tr{(Izk)2}
Izk . (16)



3

Such an approximation is valid for the initial state of nu-
clear spin when correlations and transverse coherence are
negligible in its equilibrium configuration. Off-diagonal
terms may appear in ρ(t) for t > 0, but it can be shown
that they only have a minor contribution to the evolution
of 〈Izk(t)〉 compared to the diagonal part expressed in Eq.
(16) (see Ref. [20]).

By using the explicit form of the Hamiltonian [Eq. (10-
12)] and density matrix [Eq. (16)], we can reduce Eq.
(15) to:

∂〈Izk〉
∂t

=
∑
i 6=k

Wik(〈Izi (t)〉 − 〈Izk(t)〉) (17)

Wki =
1

Tr{(Izk)2}

∫ t

0

Tr{[H̃1(t), Izk ][H̃1(t− t′), Izi ]}dt′

where Wki has a clear physical meaning as the flip-flop
rate between nuclear spins at site i and k.

For a 2D InAs/GaAs quantum dot, we take As nuclei
(I = 3/2) as an example for further calculation. The
parameter Wki can be analytically calculated when ap-
proximating the integration upper limit in the above ex-
pression for Wki from t to infinity [22].

Wik =
17
√

2π
5

C2
ik(A2

ik + gik)−1/2

+
12
√

2π
5

C2
ik(A2

ik + 64C2
ik + gik)−1/2

+
9
√

2π
10

C2
ik(A2

ik + 256C2
ik + gik)−1/2, (18)

Aik = Ai −Ak, (19)

Cik = Bik +
AiAk

4geµBB0
, (20)

gik = 80
∑
j 6=i,k

(Cij − Ckj)2. (21)

The hyperfine coupling rate Ai is proportional to square
of the electron wave function in a quantum dot. And in
the following calculation we assume the dot potential is
like a square well in the z-direction and the electron wave
function takes a Gaussian shape in the x, y-plane. The
hyperfine coupling rate Ai can then be written as Ai =
A0 cos2(πzi/z0) exp[−(x2

i + y2
i )/l20], where (xi, yi, zi) are

spatial coordinate of the site i. l0 and z0 are, respectively,
the Fock-Darwin radius and thickness of the quantum
dot, and A0 is the hyperfine coupling for the nuclear spin
at the origin where the electron locates.

We assume the nuclei spins follow a diffusion process,
where the flip-flop rate for two distant sites is negligible.
This approximation is justified by the fact that the coeffi-
cient Cik generally decays to zero fast as Rik increases. If
we treat 〈Izk(t)〉 as a continuous function of spatial vari-
able xα (α = x, y, z). We can then carry out a Taylor

expansion of 〈Iz(t)〉 for site i around site k:

〈Izi (t)〉 ≈ 〈Izk(t)〉+
∂〈Izk(t)〉
∂xα

(xαk − xαi )

+
1
2
∂2〈Izk(t)〉
∂xα∂xβ

(xαk − xαi )(xβk − x
β
i ) + · · · (22)

where Einstein’s summation convention is implied for
spatial index α, β. Substituting this into Eq. (17) and
noting that the summation of the first order derivative
term over all sites vanishes due to the lattice symmetry
[25], we have:

∂〈Izk〉
∂t

≈ [
∑
i≈k

1
2
Wik(xαk − xαi )(xβk − x

β
i )]

∂2〈Izk(t)〉
∂xα∂xβ

(23)

The
∑
i≈k notation above means summarization over the

sites near k. Define coefficient Dαβ =
∑
i≈kWik(xαk −

xαi )(xβk − xβi )/2 and similarly note that for α 6= β the
summation over all sites vanishes, we have:

∂〈Izk〉
∂t

= (Dxx ∂
2

∂x2
+Dyy ∂

2

∂y2
+Dzz ∂

2

∂z2
)〈Izk(t)〉 (24)

Eq. (24) is a 3D anisotropic diffusion equation with
spatially varying diffusion coefficients (as Aik, Bik, Wik

all depend on the spatial coordinates), which is not easy
to solve. To further simplify it, we note that to obtain
the major feature for the full time dynamics of the Over-
hauser field 〈hz(t)〉 =

∑
k Ak〈Izk(t)〉, it is reasonable to

first ignore the diffusion in the z direction as the quan-
tum dot layer is usually a few nm thick and chemical
or structural mismatch in adjacent layers may strongly
suppress diffusion in the z direction [18]. In addition,
from symmetry in the 2D x, y-plane, we expect to have
Dxx ≈ Dyy and thus define an average 2D diffusion co-
efficient D(x, y) =

∑
i≈kWik[(xk − xi)2 + (yk − yi)2]/4.

Now we have a simplified 2D diffusion equation:

∂〈Izk〉
∂t

= D(x, y)(
∂2

∂x2
+

∂2

∂y2
)〈Izk(t)〉. (25)

The above partial differential equation can be effective
solved using the finite element method by coarse graining
a large number of nuclear spin sites to a small number
of mesh nodes. But before solving Eq. (25), we would
like to have some discussion about the diffusion coeffi-
cient D(x, y). For x, y � l0, the role of electron can be
neglected and a numerical calculation of the above diffu-
sion coefficient gives a uniform background value D ≈ 7
nm2/s, which is consistent with the previous theoretical
and experimental study of the diffusion coefficient in the
bulk material [20, 21, 22]. In our calculation, we set the
quantum dot parameters as l0 = 30 nm, z0 = 10 nm,
A0 = 1 µeV ≈ 1.5 MHz,

∑
k Ak ≈ 80 µeV , the lat-

tice constant a0 = 0.563 nm, and the number of nuclei
N ≈ 9×105, according to the typical experimental values
[16, 17, 18].

Within the range of Fock-Darwin radius l0, however,
the presence of the quantum dot electron will change the
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diffusion coefficient through two competing mechanisms:
on the one hand, the presence of the confined electron
generates an inhomogeneous Knight shift [6], which lifts
the degeneracy of the nuclear Zeeman energy for differ-
ent nuclei and prevents the spin flip-flop; on the other
hand, electron mediated nuclear spin flip-flop enhances
the nuclear spin diffusion from the center to the edge of
the dot.

Our numerical simulation shows that whether one
mechanism dominates the other is largely determined by
the external magnetic field B0. Fig. 1-2 show the diffu-
sion coefficient D(x, y) under B0 = 0.2T and B0 = 2T .
We can see that the electron mediated flip-flop greatly
enhances the nuclear spin diffusion near the center of the
dot under a small magnetic field (with a sharp peak in
D(x, y)), while for a large magnetic field, this effect is
negligible compared to the Knight shift which suppresses
the nuclear spin diffusion (with a wide dip in D(x, y)).
The difference can be easily explained from the effective
Hamiltonian [Eq. (10-12)]: the electron mediated flip-
flop term is inversely proportional to B0 while the Knight
shift term is independent of B0. We note that the rea-
son why we have a narrower peak than the dip is due to
the fact that the Knight shift term is proportional to the
hyperfine coupling (with a Gaussian distribution) while
the Electron mediated flip-flop term is proportional to
the product of two nuclei’s hyperfine coupling rates. We
also note that the 2D diffusion coefficient D(x, y) in Fig.
1-2 does not have azimuthal symmetry since in our cal-
culation we assume the nuclear spins in a square lattice
which has no azimuthal symmetry.

III. COMPARISON WITH EXPERIMENTS

To compare with experiments, we numerically solve
the diffusion equation [Eq. (25)] under certain initial
and boundary conditions. For the initial condition, the
nuclear spins are partially polarized through the DNP
process from the hyperfine interaction with the elec-
tron spin [12, 13, 14, 15]. It is reasonable to expect
that right after the DNP process, the polarization dis-
tribution 〈Izk〉 is proportional to the hyperfine interac-
tion rate. So in the following calculation, we assume
〈Izk〉 ∝ Ak ∝ exp[−(x2

i + y2
i )/l20] at t = 0 for solving

the diffusion equation [Eq. (25)]. We can take the natu-
ral boundary condition where 〈Izk〉 approaches zero when
the radius goes to infinity. However, in numerical calcu-
lation, we have to take a finite radius. To make the spin
diffusion possible, this finite radius has to be significantly
larger than the radius of the size l0 of the initial electron
wave packet. In the calculation, we typically take the
integration size about 300 nm (10 times of l0) so that
the number of total nuclear spins in this area is about
100 times the number of initially partially polarized nu-
clear spins covered by the electron wave packet. With
this choice, we expect the cutoff error should be small
(at a percent level).
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FIG. 1: Diffusion Coefficient D(x,y) under B0 = 0.2T . The
narrow high peak at the center of the dot is due to electron-
mediated nuclear spin flip-flop, and the wide dip is due to
inhomogeneous Knight shift.
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FIG. 2: Diffusion Coefficient D(x,y) under B0 = 2T . The in-
homogeneous Knight shift dominates in this case, so diffusion
is generally suppressed within the Fock-Darwin radius.

First, to compare with the experiments in Ref. [17], we
calculate the relaxation of the Overhauser field hz(t) =∑
k Ak〈Izk(t)〉 under different electron states and different

values of the external magnetic field B0, and the result
is shown in Fig. 3. We note that for the double quan-
tum dot system in Ref. [17], if the electron stays in the
(2,0) singlet state, the electron spin has Sz ≡ 0, with
basically no influence on the nuclear spin diffusion. In
this case, the nuclear spin diffusion is governed by the
intrinsic nuclear dipole-dipole interaction. However, for
the electron in the (1,1) state, with the magnetic field
in the range of tens of mT as in this experiment, the
electron mediated spin diffusion dominates the Knight
shift and it accelerates the nuclear spin relaxation. One
can see two effects from Fig. 3 with the magnetic field
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FIG. 3: Decay of the Overhauser field under various small
magnetic fields. The solid line refers to the case with electron
staying in the (2,0) singlet state where electron plays no role
in nuclear spin diffusion.
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FIG. 4: Decay of the Overhauser field under a strong magnetic
field. The solid line shows the dynamics of the Overhauser
field under B = 2T and the dotted line is a fit by using a
constant diffusion coefficient.

B0 = 10 mT or 20 mT: (1) electrons in the (1,1) state will
speed up the decay of the Overhauser field compared to
electrons in the (2,0) state; (2) a smaller magnetic field
gives a faster decay of the Overhauser field. Both of these
effects agree with the experimental observations in Ref.
[17], and the decay time scale is also consistent with what
one measures from the experiments in term of the order
of magnitude.

With a much larger magnetic field (say, B0 = 2T , as in
experiments in Ref. [18]), the electron mediated nuclear
spin diffusion is suppressed, and the Knight shift plays a
more important role. The Knight shift suppresses the nu-
clear spin diffusion, and can prolong the relaxation time
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l
0
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r
0
=25nm, τ≈5s

r
0
=20nm, τ≈2s

FIG. 5: Overhauser Decay of the Overhauser field under vari-
ous initial distributions of the nuclear polarization. The solid
line refers to the case with a long DNP pump time that gives
a Gaussian distribution with the size characterized by the
Fock-Darwin radius l0. Other lines correspond to narrower
polarization distribution characterized by a Gaussian with its
size r0 < l0.

of the Overhauser field to make it significantly larger than
the relaxation time in the bulk material. Fig. 4 shows de-
cay of the Overhauser field in this case, and we can fit the
curve with an effective constant diffusion coefficient with
its value about Deff ≈ 0.7nm2/s. Compared with the
diffusion coefficient in the bulk material (D ≈ 7nm2/s),
the effective diffusion here is suppressed by a factor of 10
under a strong magnetic field B0. Experiments done in
Ref. [18] yield an effective diffusion coefficient 50 times
smaller than the value in the bulk system. While the
suppression there could have contribution from other fac-
tors, such as inhomogeneity of lattice constant there, we
believe that the Knight-shift induced suppression plays
a large role in this experiment under a strong magnetic
field.

The experiment in Ref. [16] studies relaxation of the
Overhauser field under different pumping time for the
DNP process. With a shorter DNP pumping time, the
nuclear spin polarization may have a narrower distribu-
tion in space [16]. Although we do not know the exact
distribution of the nuclear spin polarization from a short
DNP pump, to model this effect qualitatively, we simply
assume that this distribution 〈Izk〉 is still a Gaussian but
with its radius r0 < l0. Taking this 〈Izk〉 as the initial con-
dition, we can calculate relaxation of the corresponding
Overhauser field from the diffusion equation [Eq. (25)],
and the result is shown in Fig. 5. The result indicates
that a narrower distribution of initial nuclear spin polar-
ization leads to a faster decay of the Overhauser field,
which is consistent with the experimental result in Ref.
[16]. This effect can be explained by noting that the dif-
fusion is much stronger near the center of the dot due to
the electron mediated diffusion peak (see Fig. 1), which
results in a shorter relaxation time of the Overhauser
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field if the initial polarization is more concentrated near
the dot center.

IV. SUMMARY AND DISCUSSION

In summary, we have established an effective method
for calculating the long time dynamics of the Overhauser
field under nuclear spin diffusion and shown that the con-
fined electron in a quantum dot can both enhance decay
of the Overhauser field by mediating nuclear spin flip-flop
and suppress nuclear spin diffusion via inhomogeneous
Knight shift. Which effect dominates depends critically
on the magnitude of the external magnetic field. We sim-
ulate the relaxation of Overhauser field under different
electron spin configuration, external magnetic field, and
initial nuclear polarization distribution, and the results
agree qualitatively with a series of recent experimental
observations.

For the purpose of maintaining the Overhauser field
generated by the DNP process as long as possible, ap-
plying a large magnetic field turns out to be the most
effective way since a large magnetic field suppresses the
electron mediated nuclear spin diffusion. The intrinsic
nuclear spin diffusion from the nuclear dipole-dipole in-
teraction is also suppressed by the inhomogeneous Knight
shift. These two kinds of suppression, combined together,

leads to a long relaxation time of the Overhauser field.
For calculations in this paper, we focus on the relax-

ation dynamics of the expectation value of the Over-
hauser field, since this is the quantity that has been
measured in several recent experiments. Similar meth-
ods could also apply to calculation of relaxation of the
variance of the Overhauser field, and in term of the time
scale, the relaxation time for variance is basically the
same as the relaxation time for the expectation value.

During the DNP process, nuclear spin diffusion also
takes place. The final distribution of the nuclear spin po-
larization and the limit on its fluctuation may depend on
a balance between the DNP pumping cycle and the con-
tinuous nuclear spin diffusion process [12, 13, 14, 15, 17].
To understand this balance, we need a more detailed un-
derstanding of the dynamics for the DNP process and its
dependence on various experimental control parameters.
This is an interesting topic for further investigation.
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